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Alzheimer’s disease is one of the deadly progressive neurodegenerative diseases among aged populations.
But, the progression of the disease can be reduced by proper treatment of the disease during the early
stages of cognitive impairment. The main objective of this study is to implement an efficient feature
selection algorithm for the detection of Alzheimer’s patients at the baseline stage itself using multimodal
data. In this paper, we propose an efficient fusion of Fisher Score ranking and greedy searching heuristic
as feature selection criteria for Alzheimer’s prediction. The proposed algorithm provides a Balanced
Classification Accuracy of 90% and 91% and Multi Area Under the Curve of 0.97, 0.98 using Support
Vector Machine, K-Nearest Neighbor respectively for classifying Normal Controls, Mild Cognitive
Impairment, and Alzheimer’s patients on Alzheimer’s Disease Neuroimaging Initiative-TADPOLE dataset
at baseline visit itself. Moreover, the proposed algorithm also provides better sensitivity, specificity of
84%, 82.5% using Support Vector Machine, K-Nearest Neighbor for binary classification of Mild
Cognitive Impairment, and Alzheimer’s patients on the Australian Imaging and Biomarker Lifestyle
dataset also. Our results indicate that the proposed methodology with efficient feature selection is
promising and can outperform the state of the art methods for early detection of Alzheimer’s.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer’s is considered to be the most deadly neurodegener-
ative disease among aged populations (Alzheimer’s Association,
2019; Ferrari et al., 2018; Eldholm et al., 2018). The prevalence
of the disease is high among aged people in both developing and
developed countries around the world (Eldholm et al., 2018;
Matthews et al., 2019; Pan and Nicolazzo, 2018; Winblad et al.,
2016; Tsoy et al., 2019). According to the World Dementia Report
2019, it has estimated that over 50 million people around the
world are suffering from dementia, which is like the population
size of South Korea or Spain (Wortmann, 2012; Lorenz et al.,
2019). Moreover, it is estimated that the worldwide prevalence
of Alzheimer’s is expected to triple 35.5 million by 2050 (Langa,
2015).
The exact parameters responsible for the occurence of Alzhei-
mer’s is not yet known. However, researchers experimenting
widely on finding out the reasons and causes of Alzheimer’s are
unable to generalize the parameters that are responsible for Alz-
heimer’s Disease (AD) (Petersen et al., 1999). However, there are
many local and global parameters of brain which are responsible
for the cognitive functionalities as well as Cerebro Spinal Fluids
(CSF) of the individual can be used as bio markers (Zimmermann
et al., 2018). Such characteristics can be found out using the
advanced brain image acquisition techniques like Magnetic Reso-
nance Imaging (MRI), Positron Emission Tomography (PET), Func-
tional Magnetic Resonance Imaging (fMRI). etc. Many
neuropsychological assesement tests like Mini Mental State Exam-
inations (MMSE), Clinical Dementia Rating (CDR), Alzheimer’s Dis-
ease Assesement Scale Cognitive (ADAS-Cog) are also used to
identify AD patients (Kurlowicz and Wallace, 1999; Salmon and
Bondi, 2009). It is possible to track out the minute variations in
local parts of the brain structure using these techniques. However,
a doctor will face difficulty in predicting AD patients because these
biomarker variations are difficult to generalize (Zimmermann
et al., 2018). In such cases, a Machine Learning (ML) model trained
using various multi modal features can be useful in predicting AD
(Zhang et al., 2012; Zhang and Shen, 2011).
eimer’s
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Normally, a patient visits a doctor when he or she is suspicious
of their cognitive abilities. All the patients visiting the doctor may
not be converted to Alzheimer’s in the future. In such cases, the
task of a doctor is to predict the AD patients of the future at the
baseline stage itself. Such predictions can be pretty useful in reduc-
ing unnecessary health care costs. Moreover, the rate of progres-
sion of AD can be effectively reduced during the early stages of
detection. In other words, if the doctor can find out the AD patients
during the early stages of their disease. Then, doctors can design an
effective medication strategy for them (Kira and Rendell, 1992). It
is also to be noted that the treatments are effective during the early
stages of predictions (somewhere during the first visit of the
patient itself) (Kira and Rendell, 1992).

As the exact parameters responsible for the AD patients are
unknown, a feature selection based approach for the ML algorithm
can be useful (Kira and Rendell, 1992). In this paper, a novel feature
selection based on the fusion of Fisher Score (FS) ranking criteria
and greedy searching strategy for classifying the patients into three
categories namely Mild Cognitive Impairment (MCI), AD and Nor-
mal Controls (NC) at baseline visit is performed on both Alzhei-
mer’s Disease Neuroimaging Initiative-TADPOLE (ADNI-TADPOLE)
and Australian Imaging and Biomarker Lifecycle (AIBL) datasets.
For training purposes, the cross-sectional baseline data of the
patients are being utilized. This paper is organized as follows: Sec-
tion 1 contains the background, Section 2 contains the materials,
Section 3 contains the methodology, Section 4 deals with the
experimental results and discussion, Section 5 deals with limita-
tions and future works and Section 6 deals with conclusions
respectively.
Table 1
Shortcomings of similar FS algorithms.

Reference Feature Selection
Algorithm

Limitation

Beheshti et al.
(2016)

Hybrid (t-test and FS) Finding threshold for optimal set
of features based on ranking

Zhou (2016) Hybrid (Genetic
Algorithm + FS)

Computational time high

Hybrid (FS + Mutual
Information)

Computational time high

Song et al.
(2017)

FDA + FS Finding threshold for optimal set
of features based on ranking
Finding best combination of

features within threshold is time
consuming
2. Related works

This section contains detailed information about the related
works done in the classification of AD patients. MRI, PET image fea-
tures with a Support Vector Machine (SVM) are used for the classi-
fication of MCI and AD patients (Hao et al., 2020). Further, MRI and
PET are also combined with a Random Forest (RF) feature selection
algorithm and Gaussian classifier, reported with an accuracy of 78%
in classifying MCI and NC patients (Forouzannezhad et al., 2020).
The researchers also conducted the studies on multimodal data
consists of MRI, cognitive tests, demographics of Open Access Ser-
ies Imaging Studies (OASIS) for the prediction of dementia patients
(Khan and Zubair, 2020; Battineni et al., 2019). A fusion of RF clas-
sifier with a correlation-based feature selection method is used for
the classification of demented, non-demented, and non-demented
to demented converters (Khan and Zubair, 2020). An SVM classifier
is used for classifying demented, non-demented, and non-
demented to demented converters with multimodal data
(Battineni et al., 2019). A transfer learning-based deep learning
model was used for the classification of AD, MCI, and healthy
patients using MRI data (Farooq et al., 2017). Researchers also pro-
posed an MRI deformation quantification model using SVM for the
classification of AD and MCI (Long et al., 2017). Further, multi-
modal data consists of an MRI. PET and CSF are used for the classi-
fication of MCI and non-MCI using SVM (Zhang et al., 2011).

Moreover, the ADNI-TADPOLE challenge dataset is widely used
by the researchers for experimenting their methods (Marinescu
et al., 2018). There are mainly two types of data cleaning
approaches observed from the previous works on the ADNI-
TADPOLE challenge set: 1. Data Imputation by substituting values
instead of missing values, 2. Deleting the samples with missing val-
ues. Researchers experimented by performing data imputation on
the missing values on longitudinal data collected at various time
points (Ghazi et al., 2019; Nguyen et al., 2018; Iddi et al., 2019;
Vivar et al., 2019). Researchers performed imputation and training
2

on the ADNI-TADPOLE MRI biomarker data using Long Short Term
Memory Recurrent Neural Networks (LSTM RNN) (Ghazi et al.,
2019). Researchers also again proposed a Recurrent Neural Net-
work (RNN) forward filling algorithm for imputation and training
on multi-modal data from ADNI-TADPOLE (Nguyen et al., 2018).
A multi-graph based RNN and Convolutional Neural Network
(CNN) is proposed by the researchers (Valenchon and Coates,
2019) for imputation and used SVM classifier. A two stage RF clas-
sification using cognitive, MRI, CSF features where the missing data
is imputed by the mean of the corresponding features are also pro-
posed by the researchers (Iddi et al., 2019). Further, researchers
also proposed a multi graph based approach for missing data
imputation on ADNI-TADPOLE classifier data with SVM classifier
(Vivar et al., 2019). In short, the studies are widely conducted on
various types of multimodalities of features. But, researchers face
a challenging task in finding the relevant features. Thus, an effi-
cient feature selection algorithm is important in identifying the
important features. Hence, our proposed methodology is focused
on feature selection algorithm to overcome this problem.

2.1. Feature selection techniques: An analysis on FS

Feature selection techniques are relevant to the creation of pre-
dictive models. Many feature ranking methods and metrics are
used by the researchers for selecting the relevant features
(Molina et al., 2002). Feature selection is very important for Alzhei-
mer’s prediction using multi-modal data also. The relevance or
combination of what type of features are the most important in
distinguishing AD from other dementia is not generalized yet
(Petersen et al., 1999).

Researchers used FS criterion as a feature selection algorithm
for the prediction of Alzheimer’s (Beheshti et al., 2016; Zhou,
2016; Song et al., 2017). The proposed feature selection algorithm
in Beheshti et al. (2016) finds the optimal set of features using FS
and t-test scores. FS criterion ranking is similarly used in other
datasets for many applications like detection of Hepatitis (Zhou,
2016), Breast Cancer (Zhou, 2016), Isochemic Stroke (Zhou,
2016). A hybrid of the Genetic Algorithm and FS is used by the
researchers in Zhou (2016) for the detection of Hepatitis and Breast
Cancer. Further, Isochemic Stroke detection is performed by a
hybrid of FS and Mutual Information in Zhou (2016). Similarly, a
hybrid of Fisher Discriminant Analysis (FDA) and FS criterion is
used for multiclass classification by the researchers 9Song et al.,
2017). The shortcomings of feature selection algorithms using FS
is illustrated in Table 1.

However, the individual FS is a better feature ranking method
despite the shortcomings as described earlier. But, finding the best
combination of features using the FS is a challenging task in feature
selection. In this paper, we propose a fusion-based algorithm



Fig. 1. The workflow of the proposed feature selection algorithm.
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where the feature selection is performed using the FS and a greedy
search to overcome the challenge. Initially, the features are ranked
on the basis of FS and then features are added and eliminated on
the basis of their performance in a greedy manner. The greedy
searching heuristic in our methodology finds a better combination
of features and thereby resolves the drawback of FS in considering
feature combinations. The basic idea is to choose a sub-optimal set
3

of features by searching each features in the ranking order of FS
only once. Such an approach always give a sub-optimal minimal
feature set because the greedy algorithm start search from the
top ranked FS feature and thereafter, adds or removes features
based on their performance. Hence, our algorithm solve the incapa-
bility of FS while handling multiple features through a better
search heuristic. Also, the proposed feature selection algorithm
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achieves a less time complexity without reducing the features also.
Moreover, the approach considers all the features rather than lim-
iting the search to some features within a threshold.
1 Same as the MMSE, cognitive test in the ADNI-TADPOLE.
2 Same as the CDRSB, cognitive test in the ADNI-TADPOLE.
3. Proposed methodology

The main objectives of the proposed algorithm is:

� To find out a sub-optimal minimal combination of features that
can maximize the performance of dimension based classifiers
such as SVM and KNN.

� Designing a feature selection algorithm that is time efficient.

The description of the methodology is given below:

1. Choosing features.
2. Pre-processing of the data.
3. Ranking of features using FS.
4. Sub-optimal minimal feature subset selection using the pro-

posed fusion of FS and greedy searching algorithm.
5. The performance evaluation of the resultant feature set which

are returned by the proposed feature selection algorithm. Both
Leave One Out Cross Validation (LOOCV) and stratified 10-fold
cross-validation strategies are used separately for estimating
the performances of the resultant feature set. The metrics such
as BCA, precision, sensitivity, specificity, F1-score are used for
evaluating the binary classifications. Along with all the metrics
used for evaluating the performance for binary classifications,
Multi Area Under Curve (MAUC) is also used for three-way clas-
sifications (AD v/s MCI v/s NC).

Fig. 1 contains the workflow of proposed feature selection
algorithm.

3.1. Datasets

A description about the dataset and the features used for pre-
dicting the diagnosis is given in this section.

3.1.1. Description of dataset
The experiments are performed on ADNI-TADPOLE and AIBL

dataset. The description of the datasets is as follows:
ADNI-TADPOLE. ADNI-TADPOLE dataset is published by the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) as a competi-
tion challenge dataset for Alzheimer’s. This is one of the standard
freely avaialble datsets for researchers (Marinescu et al., 2018).
The dataset is comprised of multimodal data of various 1737
patients collected over multiple time points. The multi-modal data
includes MRI, PET, CSF and cognitive tests. The main aim of the
ADNI-TADPOLE challenge dataset is to predict AD risk individuals
at an early stage. The dataset is a collection of MRI, PET Region of
Interests (ROI) extracted features, CSF, Genetic, and neuro-
psychological cognitive assessment data of individuals performed
over various periods during ADNI projects such as ADNI, ADNI-1
(Marinescu et al., 2018). The participant’s of the ADNI projects have
given their full consent for sharing their data to the public
(Marinescu et al., 2018). Hence, the dataset where the ethical con-
cerns are already satisfied are chosen for our study. The dataset is a
comprehensive collection of biomarkers from various modalities
that are promising in distinguishing AD from MCI and NC
(McKhann et al., 2011).

AIBL. AIBL dataset is published in November 14, 2016, for iden-
tifying which biomarkers, cognitive characteristics, lifestyle factors
help in identifying AD from MCI patients. Similar to ADNI-
TADPOLE, AIBL also one of the standard freely avaialble datasets
4

for researchers (Ellis et al., 2009). The participant’s of the AIBL pro-
jects have also given their full consent for sharing their data to the
public (Ellis et al., 2009). Hence, the dataset is selected for our
study. The cohort for the study is selected from Australia. There
over 1000 participants data consists of various factors such as lab
data, medical history data, lifestyle data, cognitive data is collected
over various time intervals. The dataset consists of 4.5 years longi-
tudinal cohort study examined in 6 month intervals (Ellis et al.,
2009).

3.2. Features description

The selection of the features are done after reviewing the previ-
ous related works. Two datasets: ADNI-TADPOLE and AIBL are con-
sidered for the study. The following features are selected from the
ADNI-TADPOLE and AIBL datasets.

3.2.1. ADNI-TADPOLE
The experiments are performed on ADNI-TADPOLE D1, D2

merged file dataset. We have chosen 21 features from this dataset.
The following features from various multi modalities are chosen
for the experiments. The Table 2 contains a detailed information
about the features and their explanation.

� MRI: Hippocampus, Ventricles, Wholebrain, Entorhinal, Fusi-
form, Middle Temporal Gyrus, Intra Cranial Volumes as
obtained from Freesurfer software.

� PET: Fluorodeoxyglucose (FDG), AV-45 Florbetpir measure-
ments captured by PET image acquisition technique.

� Genetic Factors: Apolipoprotein E4 (APOE4) which is a genetic
factor for AD.

� Cognitive Tests: Clinical Dementia Rating Scale Box (CDRSB),
Mini Mental State Examination (MMSE), Rey Audital Verbal
Learning Test (RAVLT), Alzheimer’s Disease Cognitive Assese-
ment Scale (ADAS), Functional Activities Questionnaire (FAQ).

� Education: Education level of the patient.
� Age: Age of the patient at baseline (in years).

The Table 2 contains a detailed information about the features
of ADNI-TADPOLE and their explanation.

3.2.2. AIBL
18 multi-modal features are chosen from AIBL dataset. The fol-

lowing features from various multi modalities are chosen for the
experiments using AIBL.

� Cognitive Tests: Mini Mental State Examination (MMSCORE),1

Clinical Dementia Rating Global (CDGLOBAL),2 Total number of
story units recalled -Logical Memory Immediate Recall (LIMMTO-
TAL), Total number of story units recalled-Partial Score of LM test
(LDELTOTAL).

� Lab Data: Thyroid Stimulate Hormone, Vitamin 12, Red Blood
Cell Count, White Blood Cell Count, Platelets, Hemoglobin,
Mean Cell Hemoglobin, Mean Cell Hemoglobin Concentrate,
Urea Nitrogen, Serum Glucose, Cholestrol and Creatinine.

The Table 3 contains a detailed information about the features
of AIBL and their explanation.

It is observed that out of the features used for the study from
both the datasets, there are only two common features namely
CDRSB and MMSE. Consequently, a study by merging the two data-
sets are impossible. Hence, the experiments are conducted sepa-



Table 2
Description about the features in ADNI-TADPOLE as explained in https://github.com/
swhustla/pycon2017-alzheimers-hack/blob/master/docs/tadpole_data_dictionary.csv
AC-Anterior Cingulate, PC-Parietal Cortex.

Feature Description

Ventricles Ventricles Volume
Hippocampus Hippocampus Volume
WholeBrain WholeBrain Volume
Entorhinal Entorhinal Volume
Fusiform Fusiform Volume
MidTemp Med Temp Volume

ICV Intracranial Volume
CDRSB Clinical Dementia Rating Scale Box
MMSE Mini-Mental State Examination

RAVLT_learning Rey Auditory Verbal Learning Test
RAVLT_immediate Rey Auditory Verbal Learning Test (5 sum)
RAVLT_Forgetting Rey Auditory Verbal Learning Test Forgetting

RAVLT_Perc_Forgetting_bl Rey Auditory Verbal Learning Test Percentile
Forgetting

ADAS11 Alzheimer’s Disease Assesement Cognition Scale
11

ADAS13 Alzheimer’s Disease Assesement Cognition Scale
13

FAQ Functional Activities Questionnaire
FDG Average FDG-PET of angular, temporal, and

posterior cingulate
AV45 Average AV45 SUVR of frontal, AC, precuneus,

and parietal cortex relative to the cerebellum
APOE4 Apolipoprotein E4
Age Age at baseline

PTEDUCAT Education
DX Diagnosis Status

Table 3
Description about the features in AIBL as explained in http://adni.loni.usc.edu/data-
dictionary-search/.

Feature Description

AXT117 Thyroid Stimulate Hormone
BAT126 Vitamin 12
HMT3 Red Blood Cell Count
HMT7 White Blood Cell Count
HMT13 Platelets
HMT40 Hemoglobin
HMT100 Mean Cell Hemoglobin
HMT102 Mean Cell Hemoglobin Concentrate
RCT6 Urea Nitrogen
RCT11 Serum Glucose
RCT20 Cholestrol
RCT392 Creatinine

MMSCORE Mini Mental State Examination Score
LIMMTOTAL Total number of story units recalled-Logical Memory

Immediate Recall
LDELTOTAL Total number of story units recalled-Partial Score of Logical

Memory test
CDGLOBAL Clinical Dementia Rating Global
DXCURREN Diagnosis status

Table 5
Summary of demographic statistics of AIBL dataset with mean, minimum, maximum

Table 4
Summary of demographic statistics of ADNI-TADPOLE dataset with mean, minimum,
maximum and standard deviation.

Statistic NC MCI AD

Age (in years) Mean 72.78 71.08 73.19
Maximum 89.0 90.3 88.0
Minimum 59.0 55.6 55.0

Standard Deviation 5.807 8.230 7.239

MMSE Mean 29.04 28.11 23.06
Maximum 30.0 26.0 30.0
Minimum 24.0 19.0 23.0

Standard Deviation 1.2642 2.041 1.67
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rately on the two datasets. By doing so, the main objective is to
find: Are there any common distinguishing features in the result-
ing minimal feature set after executing the proposed feature selec-
tion algorithm?.
and standard deviation. NR-Not Reported.

Statistic NC MCI AD

Age (in years) Mean NR NR NR
Maximum NR NR NR
Minimum NR NR NR

Standard Deviation NR NR NR

MMSE Mean 28.70 26.944 20.28
Maximum 30.0 26.0 30.0
Minimum 24.0 19.0 23.0

Standard Deviation 1.2642 2.041 1.67
3.3. Pre-processing

In both datasets, the cross-sectional data of the patients at the
baseline stage is only considered for the experiments. This step is
performed to find out the effectiveness of using baseline training
data for predicting AD at the baseline stage itself. As far as a doctor
is concerned, the predictions using baseline data alone help in
many ways. A doctor need not wait for further follow-up data for
5

making their predictions. Thus, a doctor can predict AD within
fewer data in a short period. The patients who are reverted from
AD to MCI and MCI to NC are eliminated from the study. Further,
the patients converted from MCI to AD, NC to MCI are considered
as AD and MCI respectively. In the final step, the patients whose
any of the selected feature data is missing are eliminated from
the study. There is no data imputation performed on the missing
data.

After the above preprocessing steps, the number of CN, MCI and
AD patients obtained on ADNI-TADPOLE are 231, 358, and 94
respectively. The number of CN, MCI and AD on AIBL are 609,
143, and 105 respectively.

The demographic description of the ADNI-TADPOLE data is
given in Table 4.

The demographic description of the AIBL data is given in
Table 5.

3.3.1. Proposed fusion of FS and greedy searching feature selection
algorithm

The algorithm initially ranks the features based on FS and then
iteratively adds the ranked features one by one based on their per-
formance. The detailed explanation of the algorithm is given
below:

FS. Initially, the model ranks features based on the FS criterion.
FS criterion is expected to find out features that maximize Between
Class Distance (BCD) and minimizes Within Class Distance (WCD).
Those features which have high FS can improve the performance of
classifiers like SVM and KNN (Song et al., 2017). The FS of a feature
is based on the ratio of scattering between class distances to the
within-class sample distance (Gu et al., 2012). The BCD and WCD
of a feature ‘i’ is given by the Eqs. (1) and (2) respectively. The over-
all FS is calculated by Eq. (3).

BCDi ¼
XL

i¼1

ðOverallmean�MeanlabeliÞ2 ð1Þ

WCDi ¼
XL

i¼1

variancelabeli ð2Þ
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FSi ¼ BCDi=WCDi ð3Þ
where Overallmean is the overallmean of the feature, meanlabel is
the mean of the feature corresponding to the individual labels, vari-
ancelabel is the variance of the feature corresponding to the indi-
vidual labels and L is the number of classes. In short, the FS
metric depends on the mean and variance of a feature correspond-
ing to a label. That is why, our proposed algorithm that contains FS
also helps in supervised learning. The proposed model as men-
tioned in Algorithm 1 is implemented on the FS ranked features.

The features are ranked on the increasing order of FS (the highest
FS feature as rank1, the second-most highest FS score feature as
rank2, and so on). The fusion of FS and greedy searching feature
selection algorithm selects a sub-optimal minimal feature set after
traversing through each feature in their rank wise order only once.
Initially, only the highest-ranked feature is added to the required
minimal feature subset (current feature set) and the performance
is evaluated also. Then, the next ranked feature is added to the cur-
rent feature set and the performance is evaluated for the new fea-
ture set. The newly added feature is retained in the current
feature set if the performance of the classifier is increased. Other-
wise, it is discarded. The performance of the classifiers is evaluated
using the LOOCV on the selected cohort’s data. BCA is the metric
used for assessing the performance of the classifiers. Likewise, the
performance of each feature is assessed by the algorithm. The fea-
tures are retained or discarded based on their performances. Thus,
the proposed fusion feature selection algorithm finds a sub-optimal
minimal feature set by traversing through each feature only once.
The pseudo-code of the proposed algorithm is given in Algorithm 1:

Algorithm 1. Fusion of FS and Greedy Searching Feature
Selection Algorithm.

Input: The set of all multi-modal features
Output: The minimal set of features for classifying AD
Method:
� Find the FS for all Features
� Sort the features in decreasing order of FS (rank the top-
most FS feature as 1 and so on).
Initialize rank = Features arranged on basis of ranks
Initialize BCA = 0.0
Initialize Featureset=[]
For i = ranks[1] to ranks[last], do
Featureset.append(ranks[i]) ie, Adding the feature to
the featureset
Perform LOOCV on the dataset using featureset and
evaluate the BCA
if (BCA is not increased), do item Featureset.remove
(ranks[i]) ie, removing the feature from the set
Return the resultant feature set
Classifiers. The experiments are performed on two classifiers
namely SVM and KNN for the study. Both SVM and KNN are one
of the most popular supervised ML algorithms used in the medical
field (Kaucha et al., 2017; Verma et al., 2017; Xing and Bei, 2019).
Moreover, the experiments are not conducted on a large feature
set also. Therefore, the choice of selection of SVM and KNN is suit-
able for our classification study. Classifiers involving neural
networks are required if there are large feature sets and require-
ment for training large data that are computationally expensive.
Hence, the classifiers involving neural networks are not considered
for our study. As the proposed feature selection algorithm finds out
a minimal feature subset, the typical ML classifiers such as SVM
and KNN are required for the study. Moreover, they are computa-
tionally inexpensive also.
6

The built-in functions of Sci-kit learn package containing SVM
and KNN in python are used for classifications. Our study used
the Radial Basis Function (RBF) kernel of SVM and 1-Nearest
Neighbor of Sci-kit learn package for our experiment. The regular-
ization parameter, c = 10 and gamma = 0.02 are chosen as the
parameters for the RBF kernel in the SVM. The choice of selection
for regularization parameter and gamma value of the RBF are made
after performing a grid search for various combinations of
c = 10, 20, 30, 40, 50 and gamma = 0.01,0.02,0.03,0.04,0.05,0.06,0.
07,0.08,0.09,0.10.

The following metrics are used to evaluate the performance of
the algorithm:

� BCA:
BCA is a metric used for measuring the accuracy of imbalanced
datasets. BCA of the total system is the sum of accuracies of
individual classes. The BCA of class ‘i’ is given in Eq. (4) and
the overall BCA is given in Eq. (5):
BCAi ¼ 1=2 � ½ðTP=TP þ FNÞ þ ðTN=TN þ FPÞ� ð4Þ
Then, the overall BCA for all the classes is mean of the individual
BCA of each classes as given in the Eq. (4):

BCA ¼ 1=L �
XL

i¼1

BCAi ð5Þ

� Precision:
Precision for class ‘i’ is given in Eq. (6):

Precisioni ¼ TP=ðTP þ FPÞ ð6Þ
where TP is the True Positives and FP is the False Positives. The
Eq. (6) calculates the precision for a single class by finding the
ratio between the True Positives to the sum of the True Positives
and False Positives in the confusion matrix for that class.
The overall precision is the mean of individual precisions of each
classes as given in Eq. (7):

Precision ¼ 1=L �
XL

i¼1

Precisioni ð7Þ

� Sensitivity or True Positive Rate:
Sensitivity for class ‘i’ is given in Eq. (8):

Sensitiv ityi ¼ TP=ðTP þ FNÞ ð8Þ
where TP is the True Positives and FN is the False Negatives. The
Eq. (8) calculates the sensitivity for a single class by finding the
ratio between the True Positives to the sum of the True Positives
and False Negatives in the confusion matrix for that class.
The overall sensitivity is the mean of individual sensitivity of
each classes as given in Eq. (9):

Sensitiv ity ¼ 1=L �
XL

i¼1

sensitivityi ð9Þ

� Specificity or True Negative Rate:
Specificity for class ‘i’ is given in Eq. (10):

Specificityi ¼ TN=ðTN þ FPÞ ð10Þ
where TN is the True Negative and FP is the False Positive. The
Eq. (10) calculates the specificity for a single class by finding
the ratio between the True Negatives to the sum of the True
Negatives and False Positives in the confusion matrix for that
class.
The overall specificity is the mean of individual specificity of
each classes as given in Eq. (11):

Specificity ¼ 1=L �
XL

i¼1

Specificityi ð11Þ
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� MAUC:
The overall MAUC is given in the Eq. (12).

MAUC¼1=LðL�1Þ�
XL�1

i¼1

XL

j¼iþ1

ð1=ni �nkÞ � ½SRi�ni �ðniþ1Þ=2�þ

½SRk�nk �ðnkþ1Þ=2� ð12Þ
where L is the number of distinct classes, ni is the number of
available points in the class ‘i’, nk is the number of available
points in the class ‘k’, SRi is the sum of the ranks of class ‘i’ test
points after ranking all the class ‘i’ and ‘k’ test points in the
ascending order of posterior probabilities of belonging to class
‘i’ (Hand and Till, 2001).
Table 6
FS Ranking of features on ADNI-TADPOLE dataset.

Rank number Feature FS value

1 CDRSB 3.26456
2 MMSE 2.825267
3 ADAS-13 2.3509701
4 ADAS-11 1.876137
5 FAQ 1.6059582
6 RAVLT_Immediate 1.104149
7 FDG 0.90156
8 RAVLT_Perc _forgetting 0.698552
9 RAVLT_Learning 0.599177
10 Hippocampus 0.50647
11 AV45 0.432278
12 Entorhinal 0.410530
13 MidTemp 0.277111
14 Fusiform 0.194059
15 APOE4 0.165384
16 Ventricles 0.119923
17 WholeBrain 0.04857
18 AGE 0.0197
19 RAVLT_forgetting 0.0134366
20 PTEDUCAT 0.0116322
21 ICV 0.00840
4. Experimental results and discussions

The experiments are conducted on the Intel Core i5 processor
CPU @2.40 GHz Lenovo machine. The proposed fusion of the FS
and greedy searching (see Algorithm 1) feature selection algorithm
returns the sub-optimal minimal features that are of high impor-
tance. The next step is to evaluate the performance of the resultant
feature set. Hence, the performance evaluation of the sub-optimal
features is performed using both LOOCV and stratified 10-fold
cross-validation strategies (separately) on the selected cohort’s
data. The LOOCV is used for evaluation because of the small size
of the sub-optimal minimal feature set and selected cohort’s data
of both the datasets (n < 1000). Moreover, the computationally
cheaper classifiers such as SVM and KNN are used in the study.
Thus, the LOOCV strategy is used for utilizing all the selected
cohort’s data for both training and testing. However, the LOOCV
strategy is performed on the imbalanced dataset of our study. As
a result, the stratified K fold cross-validation is also used for getting
more insights on the performance of the sub-optimal minimal fea-
ture set. As stratified K fold cross-validation evaluations can main-
tain an equal proportion of representation of the labels during each
fold which is a good strategy for overcoming the drawbacks occur-
ring in the training of imbalanced datasets (Pedregosa et al., 2011).
A 10-fold stratified cross-validation is performed throughout the
experiments in the paper. It is observed that the recent literatures
especially in the medical field used stratified 10-fold cross-
validation with good performances (Zhang et al., 2017; Marques
et al., 2020; Sarawgi et al., 2020; Khagi et al., 2019). The perfor-
mance metrics such as BCA, sensitivity, specificity, F1-score, and
MAUC are measured every 10 folds. The average of the perfor-
mance metrics in each fold is calculated to give the final perfor-
mance measures. LOOCV and stratified 10-fold cross-validations
are used separately while evaluating the performances using the
sub-optimal minimal feature set for both three-way and binary
classifications.

The performance of the proposed feature selection method is
evaluated on the ADNI-TADPOLE and AIBL datasets. The experi-
mental results reported for both ADNI-TADPOLE and AIBL along
with discussions are explained in this section.

4.1. Results on ADNI-TADPOLE

The FS ranking of features on ADNI-TADPOLE dataset in
descending order is given as follows: CDRSB, MMSE, ADAS-13,
ADAS-11, FAQ, RAVLT_Immediate, FDG, RAVLT_perc_forgetting,
RAVLT_learning, Hippocampus, AV45, Entorhinal, MidTemp, Fusi-
form, APOE4, Ventricles, WholeBrain, AGE, RAVLT_forgetting, PTE-
DUCAT, ICV (see Table 6). It is observed that all top-ranked features
are not maximizing the performance of SVM and KNN. However, a
combination of low ranked feature like AV45 or FDG with top-
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ranked features (cognitive tests) can increase the performance
(see Table 7). For the selected cohort of 683 patient’s, the features
that are of high importance as found out by the proposed fusion of
FS and greedy searching feature selection algorithm (NC v/s MCI v/
s AD) on ADNI-TADPOLE dataset are: CDRSB, MMSE, ADAS-13, and
AV45.

The performance metrics evaluated on ADNI-TADPOLE using
the proposed features for SVM and KNN classifiers with LOOCV
strategy are shown in Table 7. The classification of NC, MCI, and
AD using CDRSB, ADAS-13, MMSE, and AV45 has achieved an over-
all BCA of 90% with SVM and 91% with KNN using LOOCV. More-
over, the proposed approach has reported a MAUC of 0.97 with
SVM and 0.98 with KNN using LOOCV (see Table 7). The misclassi-
fication is comparatively higher while predicting NC as MCI using
both SVM and KNN with LOOCV (see Tables 9 and 10). The confu-
sion matrix for SVM, KNN on ADNI-TADPOLE using LOOCV are
given in Tables 9 and 10. Table 8 contains the performance results
using CDRSB, ADAS-13, MMSE, and AV45 with stratified 10-fold
cross-validation. KNN has achieved the highest BCA and MAUC of
90% and 0.96 respectively using stratified 10-fold cross-validation.

Tables 11 and 12 contains the performance of the proposed fea-
tures (returned by the proposed feature selection algorithm) on
ADNI-TADPOLE for binary classifications using LOOCV and strati-
fied 10-fold cross-validations respectively. For binary classification
using SVM, NC v/s AD has achieved a BCA of 98% using cognitive
tests such as MMSE and CDRSB on ADNI-TADPOLE and BCA of
100% for MCI v/s AD and MCI v/s NC classifications using MMSE,
CDRSB, FDG, and AV45. However, KNN has reported tremendous
performance accuracy for all binary classifications. It is also note-
worthy that while classifying MCI and NC using KNN, MMSE,
CDRSB, FDG, AV45 has reported with BCA of 100% (see Tables 11
and 12).

4.2. Results on AIBL

The FS ranking of features on AIBL dataset in decreasing order is
as follows: LDELTOTAL, CDGLOBAL, LIMMTOTAL, MMSCORE,
HMT100, RCT6, HMT102, HMT40, HMT3, RCT20, RCT392,
AXT117, RCT11, HMT13, HMT7, BAT126 (see Table 13). However,
similar to ADNI-TADPOLE, all the top ranked features are not max-
imizing the performance of SVM and KNN. A combination of low
ranked feature with high ranked features can increase the perfor-
mance of SVM which is a pattern seen in ADNI-TADPOLE as well



Table 7
Summary of performance metrics using SVM and KNN on ADNI-TADPOLE (3-way classification) with LOOCV.

Classifier Total features Features chosen Features BCA Precision Sensitivity Specificity MAUC

SVM 21 4 CDRSB 90.10% 93.63% 90.40% 95% 0.97
ADAS-13
MMSE
AV45

KNN 21 4 CDRSB 91% 90.61% 90.66% 94.66% 0.98
ADAS-13
MMSE
AV45

Table 8
Summary of performance metrics using SVM and KNN on ADNI-TADPOLE (3-way classification) with stratified 10-fold cross-validation.

Classifier Total feature length Proposed feature length Features BCA Precision Sensitivity Specificity MAUC

SVM 21 4 CDRSB 88% 89% 88% 91% 0.95
ADAS-13
MMSE
AV45

KNN 21 4 CDRSB 90% 90% 90% 90% 0.96
ADAS-13
MMSE
AV45

Table 9
Confusion matrix of SVM on ADNI-TADPOLE using LOOCV (3-way classifications).

NC AD MCI

NC 209 0 22
AD 0 78 16
MCI 0 8 350

Table 10
Confusion matrix of KNN on ADNI-TADPOLE using LOOCV (3-way classifications).

NC AD MCI

NC 214 0 17
AD 0 83 11
MCI 14 13 331
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(see Table 14). For the selected cohort of patient’s, the features that
are of high importance as found out by the proposed fusion of FS
and greedy searching feature selection algorithm (NC v/s MCI v/s
AD) on AIBL dataset are: LDELTOTAL, CDGLOBAL, and MMSCORE.

The performance metrics evaluated on AIBL dataset using SVM
and KNN with LOOCV are shown in Table 14. The proposed feature
selection algorithm has reported BCA of 77%, 76% with SVM, KNN
respectively using LDELTOTAL, MMSCORE, and CDGLOBAL with
LOOCV. Table 15 contains the performace on AIBL dataset using
SVM and KNN with stratified 10-fold cross-validation. It is worth
mentioning that SVM has achieved much better BCA, precision,
sensitivity, and specificity of 92.5%, 87%, 92%, and 92% respectively
Table 11
Summary of performance metrics using SVM and KNN on ADNI-TADPOLE for binary class

Classifier Classification type Proposed features

SVM NC v/s AD MMSE, CDRSB
MCI v/s AD MMSE, CDRSB
MCI v/s NC MMSE, CDRSB

FDG, AV45

KNN NC v/s AD MMSE, CDRSB
MCI v/s AD ADAS11,Wholebrain
MCI v/s NC MMSE, CDRSB
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using stratified 10-fold cross-validation (see Table 15). The mis-
classification rate is comparatively higher in AIBL while predicting
AD as MCI using SVM (see Table 16) and MCI as AD using KNNwith
LOOCV (see Table 17). The confusion matrix for SVM on AIBL using
LOOCV is given in Table 16. The confusion matrix for KNN on AIBL
using LOOCV is given in Table 17.

Tables 18 and 19 contains the performance of the proposed fea-
tures (returned by the proposed feature selection algorithm) on
AIBL for binary classifications using LOOCV and stratified 10-fold
cross-validations. Binary classifications on AIBL using both SVM
and KNN has reported comparatively lower results for MCI v/s
AD classifications with BCA of 84% and 82% respectively using
CDGLOBAL and MMSCORE with LOOCV. However, our proposed
methodology has reported a better both sensitivity of 84% with
SVM and specificity of 82.5% with KNN in classifying MCI and AD
also highlights the importance of feature selection algorithm using
LOOCV. Cognitive tests like CDGLOBAL, LIMMTOTAL, LDELTOTAL,
and MMSCORE are promising features in classifying MCI v/s AD
(see Tables 18 and 19) (see Table 20).
4.3. Missing data handling

It is to be noted that unlike other compared studies (Nguyen
et al., 2018; Iddi et al., 2019), the missing data handling of our
methodology involves the deletion of all patients with missing fea-
ture data. However, studies (Ghazi et al., 2019; Iddi et al., 2019)
performed data imputation using RNN and R tool Nguyen et al.,
2018 has achieved lower BCA, MAUC than our approach on
ADNI-TADPOLE dataset (see Table 21). The study conducted by
ifications with LOOCV.

BCA Precision Sensitivity Specificity

98% 96% 99% 98%
100% 100% 100% 100%
100% 100% 100% 100%

100% 100% 100% 100%
100% 100% 100% 100%
100% 100% 100% 100%



Table 12
Summary of performance metrics using SVM and KNN on ADNI-TADPOLE for binary classifications with stratified 10-fold cross-validation.

Classifier Classification type Proposed features BCA Precision Sensitivity Specificity

SVM NC v/s AD MMSE, CDRSB 97% 96% 99% 98%
MCI v/s AD MMSE, CDRSB 100% 100% 100% 100%
MCI v/s NC MMSE, CDRSB 100% 100% 100% 100%

FDG, AV45

KNN NC v/s AD MMSE, CDRSB 100% 100% 100% 100%
MCI v/s AD ADAS11,Wholebrain 100% 100% 100% 100%
MCI v/s NC MMSE, CDRSB 100% 100% 100% 100%

Table 13
FS Ranking of features on AIBL dataset.

Ranknumber Feature FS value

1 LDELTOTAL 2.446481
2 CDGLOBAL 2.008132
3 LIMMTOTAL 1.8561295
4 MMSCORE 1.534779
5 HMT100 0.0195
6 RCT6 0.01903488
7 HMT102 0.017035
8 HMT40 0.015722
9 HMT3 0.013544
10 RCT20 0.0131114
11 RCT392 0.011801822
12 AXT117 0.010621
13 RCT11 0.0072096
14 HMT13 0.00716506
15 HMT7 0.00539985
16 BAT126 0.001149

Table 16
Confusion matrix of SVM on AIBL dataset using LOOCV (3-way classifications).

NC AD MCI

NC 587 21 1
AD 43 81 19
MCI 6 14 85

Table 17
Confusion matrix of KNN on AIBL dataset using LOOCV (3-way classifications).

NC AD MCI

NC 566 38 5
AD 34 87 22
MCI 4 23 781
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Albright (2019) deleted the participants with missing data is the
same as our approach to missing data handling also achieved a
lower MAUC of 0.866. Besides, the study conducted by researchers
in Moore et al. (2019) has ignored the time point missing data
(without deleting the patients data) also resulted in lower BCA
and MAUC of 73% and 0.82 respectively. But, the FS based feature
selection is not implemented in Albright (2019) making our
approach better. Moreover, the researchers find it difficult to
choose the imputation strategy for missing health care data due
to its inconsistency and unpredictability. That is why using only
the complete data patients for our algorithm is a much better
approach ensuring the study to be conducted purely on data from
Table 14
Summary of performance metrics using SVM and KNN on AIBL (3-way classification) with

Classifier Total feature length Proposed feature length Propos

SVM 18 3 LD
CD
MM

KNN 18 3 LD
CD

Table 15
Summary of performance metrics using SVM and KNN on AIBL (3-way classification) with

Classifier Total feature length Proposed feature length Propos

SVM 18 3 LDE
CDG
MM

KNN 18 3 LDE
CDG

H
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health sources without any external interventions like imputation.
The significant count of samples even after deleting missing data is
also a good indicator for conducting the study. Therefore, deleting
the incomplete participant’s data instead of using imputed values
for missing data can improve the performance to a greater extent.

4.4. Proposed methodology without feature selection

The feature selection algorithm has significantly improved the
performance in the classification of AD, NC, and MCI in both data-
sets. Fig. 2 contains the performance of the methodology without
LOOCV.

ed features BCA Precision Sensitivity Specificity

ELTOTAL 77% 87.5% 79% 95%
GLOBAL
SCORE

ELTOTAL 76% 82% 82.66% 95%
GLOBAL
HMT3

stratified 10-fold cross-validation.

ed features BCA Precision Sensitivity Specificity

LTOTAL 92.5% 87% 92% 92%
LOBAL
SCORE

LTOTAL 82.5% 84% 81% 81%
LOBAL
MT3



Table 18
Summary of performance metrics using SVM and KNN on AIBL for binary classifications using LOOCV.

Classifier Classification type Proposed features BCA Precision Sensitivity Specificity

SVM NC v/s AD CDGLOBAL, MMSCORE 92% 97% 82% 91%
LIMMTOTAL,LDELTOTAL

MCI v/s AD CDGLOBAL, MMSCORE 84% 85% 84% 84%
MCI v/s NC LIMMTOTAL, CDGLOBAL 93% 87.5% 93% 93%

KNN NC v/s AD CDGLOBAL, LDELTOTAL 96% 95.5% 95.5% 95.5%
MMSSCORE

MCI v/s AD CDGLOBAL,LIMMTOTAL,LDELTOTAL 82% 83% 82.5% 82.5%
MCI v/s NC LDELTOTAL, CDGLOBAL 89% 86.5% 88.5% 88.5%

Table 19
Summary of performance metrics using SVM and KNN on AIBL for binary classifications using stratified 10-fold cross-validation.

Classifier Classification type Proposed features BCA Precision Sensitivity Specificity

SVM NC v/s AD CDGLOBAL, MMSCORE 92.5% 87% 92% 92%
LIMMTOTAL,LDELTOTAL

MCI v/s AD CDGLOBAL, MMSCORE 81.5% 82% 81.5% 81%
MCI v/s NC LIMMTOTAL, CDGLOBAL 92.1% 97% 82% 92%

KNN NC v/s AD CDGLOBAL, LDELTOTAL 82.5% 84% 81% 81%
MMSSCORE

MCI v/s AD CDGLOBAL,LIMMTOTAL,LDELTOTAL 81.5% 82% 81.5% 81%
MCI v/s NC LDELTOTAL, CDGLOBAL 96% 95.5% 95.5% 95.5%

Table 20
Handling of missing data (ADNI-TADPOLE) in the compared papers.

Reference Technique

Ghazi et al. (2019) Imputation using RNN
Moore et al. (2019) Ignored the missing time points of longitudinal data
Nguyen et al. (2018) Imputation using RNN
Iddi et al. (2019) Imputation using R tool
Albright (2019) Deleted participants with missing data

Proposed approach Deleted participants with missing data

Fig. 2. Proposed methodology comparison after excluding proposed feature selection (on
on ADNI-TADPOLE with LOOCV.

Table 21
Comparison of the proposed methodology for NC v/s MCI v/s AD classifications with the exi
Reported.

Reference Feature length

Ghazi et al. (2019) 6
Moore et al. (2019) 13

Cognitive
Nguyen et al. (2018) 6 MRI,
Iddi et al. (2019) 12 MRI,

PET
Albright (2019) 13 G

Cognitiv

Proposed approach 4 Cogn
(LOOCV) Proposed approach 4 Cogn
(LOOCV) Proposed approach 4 Cogn

(Stratified 10-fold cross-validation) Proposed approach 4 Cogn
(Stratified 10-fold cross-validation)
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using the proposed feature selection algorithm using SVM and KNN
respectively evaluated using LOOCV for ADNI-TADPOLE. Fig. 3 con-
tains the performance of the methodology without the proposed
feature selection algorithm using SVM and KNN respectively eval-
uated with stratified 10-fold cross-validations for ADNI-TADPOLE.
Fig. 4 contains the performance of the methodology without using
the proposed feature selection algorithm for SVM and KNN respec-
tively evaluated using LOOCV for AIBL. Fig. 5 contains the perfor-
mance of the methodology without using the proposed feature
the proposed methodology) using SVM and KNN for NC v/s MCI v/s AD classification

sting studies using ADNI-TADPOLE dataset. LDA-Linear Discriminant Analysis, NR-Not

Modalities Longitudinal/Cross-sectional Classifier BCA MAUC

MRI Longitudinal LDA NR 0.75
MRI Longitudinal RF 73% 0.82

tests, Age, Gender
Cognitive, CSF Longitudinal SVM 86% 0.866
Cognitive tests Longitudinal RF 86% NR
, Genetic risks
enetic, MRI Longitudinal RNN NR 0.866
e tests, Race, Age

itive tests, PET Cross-sectional SVM 90% 0.97
itive tests, PET Cross-sectional KNN 91% 0.98
itive tests, PET Cross-sectional SVM 88% 0.95
itive tests, PET Cross-sectional KNN 90% 0.96
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selection algorithm for SVM and KNN respectively evaluated using
stratified 10-fold cross-validations for AIBL. The proposed method-
ology consisting of feature selection is better than using all the fea-
tures (without feature selection) (see Figs. 2–5). The BCA without
feature selection in the proposed methodology reported a BCA of
33.3% and 43.3% using SVM and KNN respectively with LOOCV
strategy for ADNI-TADPOLE dataset (see Fig. 2). The BCA without
feature selection in the proposed methodology reported a BCA of
33.3% and 40% using SVM and KNN respectively with stratified
10-fold cross-validation strategy for ADNI-TADPOLE dataset (see
Fig. 3). The observed BCA for AIBL without feature selection is also
less with 36.4% and 43.2% using SVM and KNN respectively using
LOOCV (see Fig. 4). Also, the BCA for AIBL without feature selection
is less with 35% and 44% respectively for SVM and KNN using strat-
ified 10-fold cross-validations (see Fig. 5). Our algorithm with fea-
ture selection on the same datasets has a significant improvement
of BCA more than 90% using SVM and KNN with both LOOCV and
stratified 10-fold-cross-validations. The fusion algorithm also
tripled the MAUC from 0.33 to 0.97 using SVM and doubled from
0.47 to 0.98 using KNN on ADNI-TADPOLE when compared to the
methodology excluding the proposed feature selection with
LOOCV. The sensitivity also increased significantly from 36% to
79% using SVM and 23% to 95% using KNN with our novel fusion
algorithm (see Figs. 2 and 4) on AIBL with LOOCV. It is also worth
mentioning that the performance is increased by using a minimal
feature set consisting of only 4 features on ADNI-TADPOLE and 3
features on AIBL.

4.5. Comparison with other studies

The performance of the proposed fusion algorithm is compared
with those studies that have predicted the diagnosis of AD, MCI,
and NC on ADNI-TADPOLE and AIBL datasets. As the main focus
is on the datasets rather than the algorithm, the studies that imple-
mented FS feature selection on other datasets are not taken into
consideration for comparisons. The studies in Ghazi et al. (2019),
Nguyen et al. (2018), Iddi et al. (2019), Albright (2019) and
Fig. 3. Proposed methodology comparison after excluding proposed feature selection (on
on ADNI-TADPOLE with stratified 10-fold cross-validation.

Fig. 4. Proposed methodology comparison after excluding proposed feature selection (on
on AIBL with LOOCV.
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Moore et al. (2019) also implemented the methodologies on
ADNI-TADPOLE dataset in the same experimental setting as ours
has paved the attention to choose them for comparison. Our study
has used 22 features from the ADNI-TADPOLE dataset which is
higher than the other five studies. But, our proposed feature selec-
tion algorithm finds an optimal set of 4 features from the 22 fea-
tures and reported with a BCA of 90% and 91% and MAUC of 0.97
and 0.98 using SVM and KNN classifiers which is better than the
other compared studies (Ghazi et al., 2019; Nguyen et al., 2018;
Iddi et al., 2019; Albright, 2019; Moore et al., 2019). The proposed
approach is designed to find out the sub-optimal set of features
using FS ranking and a greedy selection based on BCA performance
as the selection criteria will eventually finish with a set of features
that aims to increase the performance of dimension based classi-
fiers like SVM and KNN. Thus, the feature selection algorithm is
more focused on the improvement of classifier performance. But,
in the other studies (Ghazi et al., 2019; Nguyen et al., 2018; Iddi
et al., 2019; Albright, 2019; Moore et al., 2019), the classifier is
designed for the features.

In our study, it is also noteworthy that the features are added
and removed to the optimal set using BCA as the evaluation func-
tion as BCA is an appropriate metric for class imbalanced datasets.
The proposed algorithm has also achieved much better BCA, sensi-
tivity and specificity of 91%, 92% and 87% respectively for NC v/s AD
classifications on AIBL compared to the study in Doecke et al.
(2012). Also, MCI v/s AD classification on AIBL also reported with
better sensitivity and specificity of 84% respectively as compared
to the study in Ashton et al. (2019). The feature selection technique
on cross-sectional data is also used in both the studies (Doecke
et al., 2012; Ashton et al., 2019). But, the feature selection tech-
nique of our proposed fusion algorithm is focused on the classifier
performance on both datasets. The comparison of our study with
similar studies in ADNI-TADPOLE and AIBL are given in Table 21.

The main benefits of the proposed methodology are:

1. A very good performance with high BCA and MAUC and mini-
mal feature set for SVM and KNN.
the proposed methodology) using SVM and KNN for NC v/s MCI v/s AD classification

the proposed methodology) using SVM and KNN for NC v/s MCI v/s AD classification



Fig. 5. Proposed methodology comparison after excluding proposed feature selection (on the proposed methodology) using SVM and KNN for NC v/s MCI v/s AD classification
on AIBL with stratified 10-fold cross-validation.

Table 22
Comparison of the proposed methodology with the existing studies using AIBL dataset. GLM-Generalized Linear Models, NR-Not Reported.

Reference Feature length Modalities Longitudinal/Cross-sectional Classifier BCA Sensitivity Specificity

NC v/s AD:
Doecke et al. (2012) 18 Blood biomarker NR RF NR 83% 83%
Proposed Approach 3 Cognitive tests Cross-sectional SVM 91% 92% 87%
(LOOCV) Lab tests
Proposed Approach 3 Cognitive tests Cross-sectional SVM 92.5% 92% 92%
(Stratified 10-fold cross-validation) Lab tests

MCI v/s AD:
Ashton et al. (2019) 12 Blood biomarker Cross-sectional GLM NR 78% 77%
Proposed approach 3 Cognitive tests Cross-sectional SVM 84% 84% 84%
(LOOCV) Lab tests
Proposed approach 3 Cognitive tests Cross-sectional KNN 76% 82.5% 82.5%
(LOOCV) Lab tests

NC v/s MCI v/s AD:
Proposed approach 3 Cognitive tests Cross-sectional SVM 92.5% 92% 92%
(Stratified 10-fold cross-validation) Lab tests
Proposed approach 3 Cognitive tests Cross-sectional KNN 82.5% 81% 81%
(Stratified 10-fold cross-validation) Lab tests
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2. The core element of our methodology is the feature selection.
The main drawbacks of the FS based algorithms are setting
the threshold for choosing the top-ranked features and finding
the best possible combination of features within that threshold.
However, the proposed feature selection algorithm does not set
a threshold. But, it considers all the features in the FS rank wise
order and finds the features that maximize each class’s accu-
racy. The main benefit of the approach is that it finds out a bet-
ter minimal set of features that can improve the performance of
SVM and KNN. This is because of the greedy strategy where the
searching initially starts from the top-ranked FS feature and
then adds or removes the next features in the rank wise order
is guaranteed to give a suitable minimal feature set. It is also
to be noted that not all features in the top FS ranking will not
maximize the performance. Hence, the inability of FS in dealing
with a combination of features is dealt with by fusing FS with a
greedy search strategy.
The proposed approach will find a minimal combination of fea-
tures (that maximizes the BCA) by comparing the performance
of each feature only once. Hence, the set of features can find out
using less time. Here, the algorithm will take O(n) time as each
‘n’ feature will be searched and compared only once, but it still
finds a locally better solution using the greedy searching heuris-
tic based on the performance which makes it time-efficient.
Besides, our study finds a minimal feature set with less time
complexity as compared to other studies (Beheshti et al.,
2016; Zhou, 2016; Song et al., 2017) where the hybrid
approaches have many optimizations and searching resulting
in high time complexity. Hence, the sub optimal minimal fea-
12
ture set for classification of AD is found out without any
exhaustive searching. Thus, the proposed fusion algorithm is a
novel approach for AD classification.

4.6. Baseline visit data

It is also worth mentioning that the proposed algorithm has
achieved better performance by using only the baseline data of
the patients when compared to other studies (Nguyen et al.,
2018; Iddi et al., 2019; Moore et al., 2019) that used consequent
visit (longitudinal) data. This kind of approach has two benefits
mainly, 1. Our approach has used only fewer amount of data as
compared to other studies (Nguyen et al., 2018; Iddi et al., 2019;
Moore et al., 2019), 2. It is possible to make predictions with
cross-sectional data alone. The diagnosis prediction for new testing
data requires only baseline data. There is no requirement of the
consequent visit longitudinal data of the patients (both training
and testing) for making predictions (see Tables 21 and 22).

4.7. Common proposed features in the two datasets

The proposed feature selection algorithm found out MMSE as a
common feature of high importance on the selected cohorts of
both ADNI-TADPOLE and AIBL datasets in NC, MCI, and AD classifi-
cations using SVM. Also, the proposed feature selection algorithm
found out CDGLOBAL as a feature of high importance on the
selected cohorts of both ADNI-TADPOLE and AIBL datasets in NC,
MCI, and AD classifications using KNN (see Tables 7, 8, 14 and
15). As far as the binary classifications are concerned, both MMSE
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and CDRSB again are found to be the high important common fea-
tures for classifying NC and AD using SVM on both the datasets.
However, CDRSB alone is the common distinguishing feature for
classifying MCI and NC patients using SVM and KNN on both the
datasets (see Tables 11, 12, 18 and 19).

4.8. Limitations and future works

The limitations of the proposed method are:

� The initial selection of features from both ADNI-TADPOLE and
AIBL is based on the features that are already used in the liter-
ature. However, the proposed methodology can be extended to
more number of features from multiple modalities.

� The features sets that are selected need to be tested with more
number of data. The proposed methodology is tested with less
number of patients in both the datasets. However, we are plan-
ning to test our model with more number of test data in the
future.

� The proposed feature selection algorithm will find a better min-
imal set of features but not the best set. Finding the most infor-
mative set of features for a classifier in a supervised wrapper
feature selection model is also a challenging task.

� Needs to work out the proposed feature selection algorithm on
the same datasets after performing better data imputation tech-
niques. The influence of missing data can often leads to bad per-
formance of a classifier. However, intelligent data imputation
techniques can add more samples for training and improves
the performance of a classifier. Moreover, the data imputation
technique also needs to be meaningful. As an extension of this
work, we are planning to design an intelligent data imputation
technique on the same datasets.

� A novel feature selection method also needs to be applied to a
local cohort population in a clinical setting. We are planning
to validate such a model by a physician also. This is also consid-
ered as future work.

5. Conclusions

Detecting AD from other MCI at the baseline stage is a difficult
task for a doctor. In this paper, a fusion of FS and greedy searching
heuristic feature selection approach is used for classifying MCI, AD,
and NC patients at baseline visit. Our main focus is on finding a
sub-optimal minimal set of features that can predict the diagnosis
of AD, MCI, and NC. The proposed approach is implemented on two
standard datasets namely ADNI-TADPOLE and AIBL. Our approach
has reported a BCA, MAUC of 90%, 0.97 using SVM and 91%, 0.98
using KNN respectively on ADNI-TADPOLE. Moreover, the pro-
posed algorithm also resulted in better sensitivity and specificity
of 84%, 82.5% using SVM and KNN respectively for binary classifica-
tion of MCI and AD on AIBL dataset. Our findings indicate that the
proposed fusion approach can out-perform other algorithms that
predict the diagnosis using multi-modality data. Further, our study
pinpoints the necessity for advanced feature selection algorithms
depending on the classifier for predicting the diagnosis of AD.
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